博客
关于我
【alg4-有向图】Kosaraju算法(计算强连通分量)
阅读量:684 次
发布时间:2019-03-17

本文共 2284 字,大约阅读时间需要 7 分钟。

有向图中的强连通性是图论中一个重要的概念,它描述了两个顶点之间的相互可达性。两个顶点v和w被称为强连通的,当且仅当它们互为可达,也就是在有向图中既存在一条从v指向w的路径,也存在一条从w指向v的路径。强连通性具有自反性、对称性和传递性,这些性质使其成为一种等价关系。基于这种等价关系,有向图可以划分为多个强连通分量,每个强连通分量是最大的由相互强连通的顶点组成的子集。

强连通分量的划分与无向图中的连通性类似,但有向图中的连通性要求双向的可达性。一个有向图可能包含1到V个强连通分量,其中V是图中的顶点总数。一个强连通图(即每个顶点都可以从任何其他顶点到达)只包含一个强连通分量,而一个有向无环图(DAG)则包含每个顶点一个强连通分量。

Kosaraju算法是一种有效地找出有向图中的强连通分量的资源敏感算法。其核心思想是通过两次深度优先搜索(DFS)来确定强连通分量。第一次DFS运行在原图的反向图上,生成一个顶点的逆后序序列。第二次DFS在原图上按照这个逆后序序列进行处理,每次递归调用处理的顶点都属于同一个强连通分量。

Kosaraju算法的关键性质是其构造函数中的每一次递归调用所标记的顶点都在同一强连通分量中。这一点由该算法的命题所证实,这使得Kosaraju算法成为强连通性分析的经典方法之一。

以下是一个实现Kosaraju算法的Java代码示例:

package section4_2;public class KosarajuSCC {    private boolean[] marked;    private int[] id;    private int count;    public KosarajuSCC(Digraph G) {        marked = new boolean[G.V()];        id = new int[G.V()];        DepthFirstOrder order = new DepthFirstOrder(G.reverse());        for (int s : order.reversePost()) {            if (!marked[s]) {                dfs(G, s);                count++;            }        }    }    private void dfs(Digraph G, int v) {        marked[v] = true;        id[v] = count;        for (int w : G.adj(v)) {            if (!marked[w]) {                dfs(G, w);            }        }    }    public boolean stronglyConnected(int v, int w) {        return id[v] == id[w];    }    public int id(int v) {        return id[v];    }    public int count() {        return count;    }    public static void main(String[] args) {        int[][] data = {            {4, 2},            {2, 3},            {3, 2},            {6, 0},            {0, 1},            {2, 0},            {11, 12},            {12, 9},            {9, 10},            {9, 11},            {8, 9},            {10, 12},            {11, 4},            {4, 3},            {3, 5},            {7, 8},            {8, 7},            {5, 4},            {0, 5},            {6, 4},            {6, 9},            {7, 6}        };        int vn = 13;        int en = 22;        Digraph digraph = new Digraph(vn, en, data);        KosarajuSCC scc = new KosarajuSCC(digraph);        System.out.println(scc.count());        System.out.println(scc.id(1));        System.out.println(scc.id(2));        System.out.println(scc.id(9));        System.out.println(scc.id(6));        System.out.println(scc.id(8));    }}

转载地址:http://aichz.baihongyu.com/

你可能感兴趣的文章
Nginx访问控制_登陆权限的控制(http_auth_basic_module)
查看>>
nginx负载均衡器处理session共享的几种方法(转)
查看>>
nginx负载均衡的5种策略(转载)
查看>>
nginx负载均衡的五种算法
查看>>
Nginx运维与实战(二)-Https配置
查看>>
Nginx配置ssl实现https
查看>>
Nginx配置TCP代理指南
查看>>
Nginx配置——不记录指定文件类型日志
查看>>
Nginx配置代理解决本地html进行ajax请求接口跨域问题
查看>>
Nginx配置参数中文说明
查看>>
Nginx配置好ssl,但$_SERVER[‘HTTPS‘]取不到值
查看>>
Nginx配置如何一键生成
查看>>
Nginx配置实例-负载均衡实例:平均访问多台服务器
查看>>
NHibernate学习[1]
查看>>
NIFI1.21.0_Mysql到Mysql增量CDC同步中_日期类型_以及null数据同步处理补充---大数据之Nifi工作笔记0057
查看>>
NIFI1.21.0_NIFI和hadoop蹦了_200G集群磁盘又满了_Jps看不到进程了_Unable to write in /tmp. Aborting----大数据之Nifi工作笔记0052
查看>>
NIFI1.21.0通过Postgresql11的CDC逻辑复制槽实现_指定表多表增量同步_增删改数据分发及删除数据实时同步_通过分页解决变更记录过大问题_02----大数据之Nifi工作笔记0054
查看>>
NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置binlog_使用处理器抓取binlog数据_实际操作01---大数据之Nifi工作笔记0040
查看>>
NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置数据路由_实现数据插入数据到目标数据库_实际操作03---大数据之Nifi工作笔记0042
查看>>
NIFI同步MySql数据_到SqlServer_错误_驱动程序无法通过使用安全套接字层(SSL)加密与SQL Server_Navicat连接SqlServer---大数据之Nifi工作笔记0047
查看>>